Transformations of Quadratic Graphs

- Functions The simplest form of a family of functions
 - Ex: Quadratics in *Standard* form $\mathbf{f}(\mathbf{x}) = \mathbf{a}\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c}$, the <u>parent</u> form that preserves the general of the graph is $\mathbf{f}(\mathbf{x}) =$
- Use " _____ the ____ " to establish Vertex Form
 - \circ Step 1 Isolate c (by grouping $ax^2 + bx$)
 - Step 2 Reduce so that a = 1
 - Step 3 Complete the square trinomial: $+\left(\frac{b}{2}\right)^2$
 - o Step 4 Balance the equation; Be Careful!
 - Step 5 Rewrite quadratic in Vertex Form
- Example 1: $f(x) = x^2 4x + 7$

Example 2: $f(x) = -2x^2 + 12x - 19$

Parent Graph: $f(x) = x^2$, known as a "parabola"

х	f(x)
-2	
-1	
0	
1	
2	

Graphing Quadratics in Vertex Form

Vertex form: f(x) =

- "a" vertical stretch or compression and direction of parabola
 - If _____, the graph opens up
 - o If _____, the graph opens down
 - o If _____, the parent graph stretches taller
 - o If ______, the parent graph compresses shorter
- (h, k) the _____ of the parabola

Revisit:

Example 1:
$$f(x) = x^2 - 4x + 7$$

Example 2:
$$f(x) = -2x^2 + 12x - 19$$

Vertex Form:
$$f(x) = (x - 2)^2 + 3$$

Vertex Form:
$$f(x) = -2(x-3)^2 - 1$$